Today’s Lecture

- Welcome Back!
- Paper Prototyping
 - User Testing
- Final Exam

Reminders
- Blog Post (Week)
- Project 3
Final Exam

- Take Home or Two Hour Exam
 - Take Home
 - Programming – WPF / Surface
 - Written Answers
 - Much > 2 hours (4+ hours)
 - Normal Final
 - Two Hours
 - Open Book / Open Note
 - Some Programming but much less picky

CIFS: Don’t forget them!
Hall of Fame / Shame?
Why Prototype?

- Get feedback easier, cheaper
- Experiment with alternatives
- Easier to change or throw away

Was your final project alpha prototype worthy?

Low fidelity High fidelity
Other Prototype Considerations

☐ Breadth vs. Depth
 ■ How many features to cover?
 ■ How well are they implemented?

☐ Examples
 ■ Word Processor
 ☐ Leave out printing, spell checking

☐ Horizontal vs. vertical
 ■ Horizontal – all breadth, little depth
 ■ Vertical – One area in depth
 ■ Horizontal – Usability (most common)
 ■ Vertical – Risky sub-area
Fidelity – User-interaction

☐ Look
 ■ Hand-drawn vs. toolkit widgets

☐ Feel
 ■ Mouse / keyboard
 ■ Point to “click”
 ■ Write input
 ☐ Tablet / Surface?
Paper Prototype

- Interactive paper mockup
 - Sketches of screen appearances
 - Paper pieces show windows, menus, dialogs

- Interaction is natural
 - Pointing = mouse
 - Writing = keyboard

- Person simulates computer operation
 - Putting down / picking up pieces
 - Writing responses
 - Describing what is going on
Why paper?

- Faster
 - Sketch vs. code

- Easier to change
 - Change between or even during
 - No code investment

- Focuses attention on big picture
 - Don’t waste time on details
 - Suggestions vs. nitpicking

- Non-programmers can help

- Clear model vs. view separation

Example: CAD Sketch
Tools

- Poster board
- Unlined index cards
- Restickable Glue
- Post-It Notes
- Correction Tape
- Photocopier
- Transparencies
- Pens, markers, scissors, tape
Tips

☐ Larger than life
☐ Monochrome
☐ Tricky visual feedback w/audio
 ■ Tool tip, drag and drop, progress bar
☐ Keep pieces organized
 ■ Envelopes, folders
Examples
Size Matters
Big / Dark Writing
Roles

☐ Computer
 ■ Design simulator
 ■ No feedback not from computer

☐ Facilitator
 ■ Present interface / tasks
 ■ Encourage user to think “aloud”
 ■ Keeps user on task

☐ Observer
 ■ Takes notes (lots of them)
 ■ Does not speak
What do you learn?

☐ Conceptual model
 ■ Do the users understand it?

☐ Functionality
 ■ Does it do what is needed?

☐ Navigation / task flow
 ■ Can users find their way around?

☐ Terminology
 ■ Do users understand the labels?

☐ Screen content
 ■ What needs to go on the screen?
What you can’t learn

- Look, color, feel
- Feel: Fitt’s Law
- Response time
- Are small changes noticed?
 - Everything is noted in a paper prototype
- Exploration vs. deliberation
 - Thrashing / exploration
 - Users do what you ask, not much tinkering with a paper prototype

Many studies show that low fidelity prototypes illustrate usability as well as high-fidelity prototypes.
Wizard of Oz

☐ Man behind the curtain
 ■ Simulate technology not available
 ☐ Voice recognition
 ☐ Artificial intelligence
 ■ Games
 ☐ Dynamic difficulty (human managers)
Users are human beings

- Human beings have been abused in the past
 - Yale electric shock study
 - MIT Fernald School study
 - Tuskegee syphilis study

Point

- Codes of conduct for human interactions
- Research related studies must be approved
 - ND – Institutional Review Board
User Pressure

- Performance anxiety
- Intelligence test
- Compare self w/others
- Feel stupid in front of observers
- Compete w/others
Respect your users

- Don’t waste time
- Make user comfortable
- Informed consent
- Privacy
- Control to the user
How many users?

- **Landauer-Nielsen Model**
 - Every tested user finds a fraction L of usability problems ($L \approx 31\%$)
 - If user tests are independent, n users will find a fraction $(1-(1-L)^n)$

- How many
 - 15 users to find 99% of one iteration
 - 5 users to find 85% on three iterations

- Rough rule of thumb
 - 3-5 users per user class
Flaws

☐ Finding of issues may be much less
 ■ Spool & Schroeder -> $L \sim 8\%$

☐ L may vary from problem to problem
 ■ Interface differences
 ■ Task complexity
 ■ Individual differences

☐ Take home point
 ■ Difficult to predict how many users to work with
 ■ More is almost always better 😊
Split into groups

- Final project (5 minutes)
 - Sketch out with your group members
 - Sketch major screens / interfaces

Wednesday: Bring it to class, demo with other people in the class
Questions?

- Weekly Blog
- Project 3
- Alpha Submission