Today’s Lecture

- Welcome Back!
- Paper Prototyping
 - User Testing
- Final Exam

Reminders
- Blog Post (Week)
- Project 3

Final Exam

- Take Home or Two Hour Exam
 - Take Home
 - Programming – WPF / Surface
 - Written Answers
 - Much > 2 hours (4+ hours)
 - Normal Final
 - Two Hours
 - Open Book / Open Note
 - Some Programming but much less picky

CIFS: Don’t forget them!

Hall of Fame / Shame?

Why Prototype?

- Get feedback easier, cheaper
- Experiment with alternatives
- Easier to change or throw away

Was your final project alpha prototype worthy?

<table>
<thead>
<tr>
<th>Low fidelity</th>
<th>High fidelity</th>
</tr>
</thead>
</table>

Other Prototype Considerations

- Breadth vs. Depth
 - How many features to cover?
 - How well are they implemented?
- Examples
 - Word Processor
 - Leave out printing, spell checking
- Horizontal vs. vertical
 - Horizontal – all breadth, little depth
 - Vertical – One area in depth
 - Horizontal – Usability (most common)
 - Vertical – Risky sub-area
Fidelity – User-interaction

- Look
 - Hand-drawn vs. toolkit widgets
- Feel
 - Mouse / keyboard
 - Point to "click"
 - Write input
 - Tablet / Surface?

Paper Prototype

- Interactive paper mockup
 - Sketches of screen appearances
 - Paper pieces show windows, menus, dialogs
- Interaction is natural
 - Pointing = mouse
 - Writing = keyboard
- Person simulates computer operation
 - Putting down / picking up pieces
 - Writing responses
 - Describing what is going on

Why paper?

- Faster
 - Sketch vs. code
- Easier to change
 - Change between or even during
 - No code investment
- Focuses attention on big picture
 - Don’t waste time on details
 - Suggestions vs. nitpicking
- Non-programmers can help
- Clear model vs. view separation

Tools

- Poster board
- Unlined index cards
- Restickable Glue
- Post-It Notes
- Correction Tape
- Photocopier
- Transparencies
- Pens, markers, scissors, tape

Tips

- Larger than life
- Monochrome
- Tricky visual feedback w/audio
 - Tool tip, drag and drop, progress bar
- Keep pieces organized
 - Envelopes, folders

Examples
Size Matters

Big / Dark Writing

Post Its / Transparencies

Roles

- Computer
 - Design simulator
 - No feedback not from computer

- Facilitator
 - Present interface / tasks
 - Encourage user to think "aloud"
 - Keeps user on task

- Observer
 - Takes notes (lots of them)
 - Does not speak

What do you learn?

- Conceptual model
 - Do the users understand it?
- Functionality
 - Does it do what is needed?
- Navigation / task flow
 - Can users find their way around?
- Terminology
 - Do users understand the labels?
- Screen content
 - What needs to go on the screen?

What you can’t learn

- Look, color, feel
- Feel: Fitt’s Law
- Response time
- Are small changes noticed?
 - Everything is noted in a paper prototype
- Exploration vs. deliberation
 - Thrashing / exploration
 - Users do what you ask, not much tinkering with a paper prototype

Many studies show that low fidelity prototypes illustrate usability as well as high-fidelity prototypes
Wizard of Oz

- Man behind the curtain
 - Simulate technology not available
 - Voice recognition
 - Artificial intelligence
 - Games
 - Dynamic difficulty (human managers)

User Testing - Ethics

- Users are human beings
 - Human beings have been abused in the past
 - Yale electric shock study
 - MIT Fernald School study
 - Tuskegee syphilis study
 - Point
 - Codes of conduct for human interactions
 - Research related studies must be approved
 - ND – Institutional Review Board

User Pressure

- Performance anxiety
- Intelligence test
- Compare self w/others
- Feel stupid in front of observers
- Compete w/others

Respect your users

- Don’t waste time
- Make user comfortable
- Informed consent
- Privacy
- Control to the user

How many users?

- Landauer-Nielsen Model
 - Every tested user finds a fraction L of usability problems ($L \approx 31\%$)
 - If user tests are independent, n users will find a fraction $(1-(1-L)^n)$
- How many
 - 15 users to find 99% of one iteration
 - 5 users to find 85% on three iterations
- Rough rule of thumb
 - 3-5 users per user class

Flaws

- Finding of issues may be much less
 - Spool & Schroeder -> $L \approx 8\%$
- L may vary from problem to problem
 - Interface differences
 - Task complexity
 - Individual differences
- Take home point
 - Difficult to predict how many users to work with
 - More is almost always better 😊
Split into groups

☐ Final project (5 minutes)
 ■ Sketch out with your group members
 ■ Sketch major screens / interfaces

Wednesday: Bring it to class, demo with other people in the class

Questions?

- Weekly Blog
- Project 3
- Alpha Submission