Today’s Lecture

- Project 1
 - Reference Client
- Switching and Forwarding
 - Chapter 3.2

Read Chapter 4.1 for Tuesday

Switching and Forwarding

Outline
- Cell Switching
- Segmentation and Reassembly

Frame / Packet Length

- How long should your frame be?
 - Similar to THT concept
- Is it a fixed size or variable?
 - Consistency?
- Frame is the atomic unit of the network
 - Cannot pre-empt it
 - Medium becomes free after block is finished being transferred

Variable vs Fixed Length Packets

- No optimal length
 - Small
 - High header-to-data overhead
 - Large
 - Low utilization for small messages
- Fixed-length easier to switch in hardware
 - Simpler
 - Enables parallelism

Each packet means more overhead
Variable Location - Lookup

Look in the first two bytes of the message from the client.

Fixed Location - Lookup

Big vs Small Packets

- Small improves flexibility
 - Finer-grained scheduling
 - Share capacity easier between flows
 - Less time waiting to forward
 • Can send when whole packet is there
- Example
 - Maximum packet = 4KB, Link speed=100 Mb/s
 - Transmission time = 4096 x 8 / 100 = 327.68us
 - High priority packet may sit in the queue 327.68us
 - Maximum packet = 48 bytes + Overhead, same link speed
 - Transmission time = 53 x 8 / 100 = 4.24us for ATM

ATM – Asynchronous Transfer Mode

- Evolved from phone network
 - Predictable
 - Deterministic
- Connection-oriented
 - Setup / teardown of virtual circuits
 - Quality of Service (QoS)

Cell Switching (ATM)

- Used in both WAN and LAN settings
- Specifications
 - ATM Forum
 - Signalling → Q.2931
- Packets are called cells
 - 5-byte header + 48-byte payload
- Commonly transmitted over SONET
 - Other physical layers possible

Big vs Small Redux

- Small improves latency (for voice)
 - voice digitally encoded at 64Kbps (8-bit samples at 8KHz)
 - need full cell’s worth of samples before sending cell
 • example: 1000-byte cells implies 125ms per cell (too long)
 - smaller latency implies no need for echo cancelers
- ATM compromise: 48 bytes = (32+64)/2
Cell Format

- User-Network Interface (UNI)
 - host-to-switch format
 - GFC: Generic Flow Control (still being defined)
 - VCI: Virtual Circuit Identifier
 - VPI: Virtual Path Identifier
 - Type: management, congestion control, AAL5 (later)
 - CLP: Cell Loss Priority
 - HEC: Header Error Check (CRC-8)

- Network-Network Interface (NNI)
 - switch-to-switch format
 - GFC becomes part of VPI field

Numbers are in bits

UNI from earlier

Numbers are in bits

Segmentation and Reassembly

- ATM Adaptation Layer (AAL)
 - AAL 1 and 2 designed for applications that need guaranteed rate (e.g., voice, video)
 - AAL 3/4 designed for packet data
 - AAL 5 is an alternative standard for packet data

Encapsulation

Convergence Sublayer Protocol Data Unit

AAL 3/4

- Convergence Sublayer Protocol Data Unit (CS-PDU)

AAL5

- CS-PDU Format

- Pad: trailer always falls at end of ATM cell
- Length: size of PDU (data only)
- CRC-32

- Cell Format
 - End-of-PDU bit in Type field of ATM header
Virtual Paths

- 8-bit VPI and 16-bit VCI
- Two-level hierarchy of virtual connections

Path Aggregation