Today’s Lecture

- Project 3
 - In-Class Exercise
- Network Issues
 - Quality of Service

Quality of Service

Outline
- Realtime Applications
- Integrated Services
- Differentiated Services
Realtime Applications

- Require “deliver on time” assurances
 - must come from inside the network

- Example application (audio)
 - sample voice once every 125us
 - each sample has a playback time
 - packets experience variable delay in network
 - add constant factor to playback time: playback point

Example Distribution of Delays

Integrated Services

- Service Classes
 - guaranteed
 - controlled-load

- Mechanisms
 - resource reservation (signalling)
 - admission control
 - policing
 - packet scheduling
Flowspec

- **Rspec**: describes service requested from network
 - controlled-load: none
 - guaranteed: delay target
- **Tspec**: describes flow’s traffic characteristics
 - average bandwidth + burstiness: token bucket filter
 - token rate \(r \)
 - bucket depth \(B \)
 - must have a token to send a byte
 - must have \(n \) tokens to send \(n \) bytes
 - start with no tokens
 - accumulate tokens at rate of \(r \) per second
 - can accumulate no more than \(B \) tokens

Per-Router Mechanisms

- **Admission Control**
 - decide if a new flow can be supported
 - answer depends on service class
 - not the same as policing
- **Packet Processing**
 - classification: associate each packet with the appropriate reservation
 - scheduling: manage queues so each packet receives the requested service

Reservation Protocol

- Called signalling in ATM
- Proposed Internet standard: RSVP
- Consistent with robustness of today’s connectionless model
- Uses soft state (refresh periodically)
- Designed to support multicast
- Receiver-oriented
- Two messages: PATH and RESV
- Source transmits PATH messages every 30 seconds
- Destination responds with RESV message
- Merge requirements in case of multicast
- Can specify number of speakers
RSVP Example

RSVP

- Associate packet with reservation (classifying):
 - source address, destination address, protocol number, source port, destination port
- Manage packets in queues (scheduling).

RSVP versus ATM (Q.2931)

- RSVP
 - receiver generates reservation
 - soft state (refresh/timeout)
 - separate from route establishment
 - QoS can change dynamically
 - receiver heterogeneity
- ATM
 - sender generates connection request
 - hard state (explicit delete)
 - concurrent with route establishment
 - QoS is static for life of connection
 - uniform QoS to all receivers
Differentiated Services

- Problem with IntServ: scalability
- Idea: segregate packets into a small number of classes
 - e.g., premium vs best-effort
- Packets marked according to class at edge of network
- Core routers implement some per-hop-behavior (PHB)
- Example: Expedited Forwarding (EF)
 - rate-limit EF packets at the edges
 - PHB implemented with class-based priority queues or WFQ

DiffServ (cont)

- Assured Forwarding (AF)
 - customers sign service agreements with ISPs
 - edge routers mark packets as being “in” or “out” of profile
 - core routers run RIO: RED with in/out

Coding

- Form into small groups
 - **Twist:** Must sit by people who you did not work with on the project

[Build a simple UDP chat server]
Write Threaded Code

• UDP Server
 – Step 1
 • Listen on port X (pass in via parameter)
 • Read message / display on screen
 – Step 2
 • Keep track of incoming IP / ports
 • Design
 – Local vs. global
 – struct vs. class

Write Main Function

• main function
 – Step 1
 • Start up the thread
 • Loop until input is QUIT!
 – Step 2
 • Send the typed text to all known other clients
 – Step 3
 • Allow adding of IP via syntax
 – ADDCLIENT 129.74.20.40 8908
 – Step 4
 • Dump current client list via DUMPSTATUS