Today’s Lecture

- Project 3
 - In-Class Exercise
- Network Issues
 - Congestion Avoidance
 - Quality of Service

Project 3

- Ninja C / C++
 - Pointers / etc.
- Discussion / in-class exercise
Congestion Control

Outline
- Congestion Avoidance
- RED
- TCP Vegas

Random Early Detection (RED)

- Notification is implicit
 - just drop the packet (TCP will timeout)
 - could make explicit by marking the packet
- Early random drop
 - rather than wait for queue to become full, drop each arriving packet with some drop probability whenever the queue length exceeds some drop level

RED Details (cont)

- Computing probability P

 $TempP = \text{MaxP} \times \frac{\text{AvgLen} - \text{MinThreshold}}{\text{MaxThreshold} - \text{MinThreshold}}$
 $P = \frac{TempP}{1 - \text{count} \times TempP}$

- Drop Probability Curve
Tuning RED

- Probability of dropping a particular flow’s packet(s) is roughly proportional to the share of the bandwidth that flow is currently getting
- MaxP is typically set to 0.02, meaning that when the average queue size is halfway between the two thresholds, the gateway drops roughly one out of 50 packets.
- If traffic is bursty, then MinThreshold should be sufficiently large to allow link utilization to be maintained at an acceptably high level
- Difference between two thresholds should be larger than the typical increase in the calculated average queue length in one RTT; setting MaxThreshold to twice MinThreshold is reasonable for traffic on today’s Internet

TCP Vegas

- Idea: source watches for some sign that router’s queue is building up and congestion will happen too; e.g.,
 - RTT grows
 - sending rate flattens

Algorithm

- Let BaseRTT be the minimum of all measured RTTs (commonly the RTT of the first packet)
- If not overflowing the connection, then
 \[
 \text{ExpectedRate} = \frac{\text{CongestionWindow}}{\text{BaseRTT}}
 \]
- Source calculates sending rate (ActualRate) once per RTT
- Source compares ActualRate with ExpectedRate
- If Diff < α, increase CongestionWindow linearly
- Else if Diff > β, decrease CongestionWindow linearly
- Else, leave CongestionWindow unchanged
Algorithm (cont)

- Parameters
 - \(\alpha = 1 \) packet
 - \(\beta = 3 \) packets

Derivation

- How long will something take via TCP?
- Derive
 - ROM – Rough Order of Magnitude Estimates
 - See in-class notes

Quality of Service

Outline
- Realtime Applications
- Integrated Services
- Differentiated Services
Realtime Applications

- Require “deliver on time” assurances
 - must come from inside the network

- Example application (audio)
 - sample voice once every 125us
 - each sample has a playback time
 - packets experience variable delay in network
 - add constant factor to playback time: playback point

![Diagram of microphone, sampler, buffer, and speaker]

Playback Buffer

Example Distribution of Delays

![Graph showing distribution of delays]
Integrated Services

- **Service Classes**
 - guaranteed
 - controlled-load

- **Mechanisms**
 - resource reservation (signalling)
 - admission control
 - policing
 - packet scheduling

Flowspec

- **Rspec**: describes service requested from network
 - controlled-load: none
 - guaranteed: delay target

- **Tspec**: describes flow’s traffic characteristics
 - average bandwidth + burstiness: token bucket filter
 - token rate r
 - bucket depth B
 - must have a token to send a byte
 - must have n tokens to send n bytes
 - start with no tokens
 - accumulate tokens at rate of r per second
 - can accumulate no more than B tokens
Per-Router Mechanisms

- Admission Control
 - decide if a new flow can be supported
 - answer depends on service class
 - not the same as policing
- Packet Processing
 - classification: associate each packet with the appropriate reservation
 - scheduling: manage queues so each packet receives the requested service

Reservation Protocol

- Called signalling in ATM
- Proposed Internet standard: RSVP
- Consistent with robustness of today’s connectionless model
- Uses soft state (refresh periodically)
- Designed to support multicast
- Receiver-oriented
- Two messages: PATH and RESV
- Source transmits PATH messages every 30 seconds
- Destination responds with RESV message
- Merge requirements in case of multicast
- Can specify number of speakers

RSVP Example
RSVP

- Associate packet with reservation (classifying):
 - source address, destination address, protocol number,
 source port, destination port
- Manage packets in queues (scheduling).

RSVP versus ATM (Q.2931)

- RSVP
 - receiver generates reservation
 - soft state (refresh/timeout)
 - separate from route establishment
 - QoS can change dynamically
 - receiver heterogeneity
- ATM
 - sender generates connection request
 - hard state (explicit delete)
 - concurrent with route establishment
 - QoS is static for life of connection
 - uniform QoS to all receivers

Differentiated Services

- Problem with IntServ: scalability
- Idea: segregate packets into a small number of classes
 - e.g., premium vs best-effort
- Packets marked according to class at edge of network
- Core routers implement some per-hop-behavior (PHB)
- Example: Expedited Forwarding (EF)
 - rate-limit EF packets at the edges
 - PHB implemented with class-based priority queues or WFQ
DiffServ (cont)

- Assured Forwarding (AF)
 - customers sign service agreements with ISPs
 - edge routers mark packets as being "in" or "out" of profile
 - core routers run RIO: RED with in/out