Course Overview

• Outline
 – Administrative Information
 – Topics and Schedule
 – Assessment/Grading

Administrative Information

• Welcome back from break!
 • Instructor: Aaron Striegel
 – 383 Fitzpatrick Hall
 – Office Hours: M, T, W, Th, F, 10
 • TA: Shu Liu
 – Office Hours: By appointment
 • Will schedule during project weeks
 – E-Mail: shu.11@nd.edu
• Course Website
 – http://netscale.coe.nd.edu/CompNet
 or
 http://netscale.coe.nd.edu/twiki/bin/view/Edu/CompNetS10
Meet Prof. Striegel

383 Fitzpatrick Hall
Phone: 631-6896
striegel@nd.edu
aaron.striegel@gmail.com
http://www.cse.nd.edu/~striegel

• Associate Professor
 – Comp Sci & Engr. (CSE)

• Teaching
 – Networking
 – System Interface Design

• Research
 – Computer networks
 – Computer security
 – System management
 – Stroke rehabilitation

Finding My Office

Office Hours
M 1, T 10, W 10, F 10, stop on by

Textbook

• Larry L. Peterson and Bruce S. Davie, "Computer Networks, A Systems Approach", Morgan Kaufmann Publishers (Elsevier)
 – Third Edition:
 • ISBN-10: 155860832X
 – Fourth Edition:
 • ISBN-10: 0123705487
Course Goals

- Learn fundamental computer network principles
- Prepare for advanced CSE courses
- Homework assignments, exams
- Learn algorithms, protocols, etc., that drive the Internet
 - Homework assignments
- Get hands dirty with implementations and experiments
 - Programming assignments
- Learn to solve problems in teams
 - Team-based programming assignments

Topics

- Acronym soup
 - TCP, UDP, MANET, IPSec, AH, ESP, RSSI, SSL, IPv4, IPv6, DHCP, GRE, MPLS, DNS, IS-IS, BGP, ARP, RPC, WTF
- Theory
 - How should it behave?
- Client/server programming
 - Roll your own P2P server
- Wireless connectivity
 - Technology awareness (2.5G, 3G, 4G)

Grading

- Homework assignments (20%)
 - Deepen understanding of principles and algorithms
- Programming projects (20%):
 - Deepen understanding of principles, practice protocols, experimental design, result presentation
- Quizzes (15%)
 - Combination of take home / in-class
- Midterm and final exam (20% each)
- Course participation (5%)
Other Items

- Academic Honor Code
- Locate team members (2-3 members / team)
 - Ask if you need help
- Participate! Ask questions! Use resources!

Introduction

Outline
 - Computer Networks Overview
 - Statistical Multiplexing
 - Inter-Process Communication
 - Network Architecture
 - Performance Metrics
 - Implementation Issues

Applications

- What applications do you use on the network?

 Split into groups of 2-4 students and come up with as many network applications as you can think of in the next 60 seconds.
Computer Networks

- Computer networking has grown explosively
- ARPANet
 - Circa early 70’s
 - Research topic -> infrastructure
- Internet
 - 1980 - Research project that involved a few dozen sites
- Today
 - How big?

Complexity of Computer Networks

- Many technologies exist; each technology has features that distinguish it from the others
- Companies create commercial network products and services
- No single underlying theory exists that explains the relationship among all parts
- Multiple organizations have created computer networks standards (some standards are incompatible with others)
- Various organizations have attempted to define conceptual models
- The set of technologies is diverse and changes rapidly
 - models are either so simplistic that they do not distinguish among details
 - or so complex that they do not help simplify the subject

Examples – Outside Networking
Complexity of Computer Networks

- The lack of consistency in the field has produced another challenge for beginners:
 - Multiple groups each attempt to create their own terminology
 - Researchers cling to scientifically precise terminology
 - Marketing teams often invent new terms to distinguish their products or services from others
 - Technical terms are confused with the names of popular products
 - Professionals sometimes use a technical term from one technology when referring to an analogous feature of another technology
 - A large set of terms and acronyms that contains many synonyms
 - Computer networking jargon contains terms that are often abbreviated, misused, or associated with products

Example

Network Applications and Programming

- Network services are provided by an application software
 - an application on one computer communicates across a network with an application program running on another computer
- Each application offers a specific service with its own form of user interface
 - but all applications can communicate over a single, shared network
- A unified underlying network that supports all applications makes a programmer's job much easier
 - only programmer needs to learn about one interface to network and one basic set of functions to be used
 - it is possible to understand network applications, and even possible to write code that communicates over a network, without understanding the hardware/software technologies
 - once a programmer masters the interface, no further knowledge of networking may be needed
- However, knowledge of the underlying network system allows a programmer to write better code and develop more efficient applications
Translation: Socket Programming

• Open a socket to another host
 – Connection
 • Computer A, Port X to Computer B, Port Y
 – Stream data
 • Send structured messages
 QUERY: I can haz cheeseburger?
 – RESP: Pai moniez first

Data Communications

• Data communications refers to the study of low-level mechanisms and technologies used to send information across a physical communication medium
 – such as a wire, radio wave, or light beam
• Data communications focuses on ways to use physical phenomena to transfer information
 – the subject may only seem useful for engineers who design low-level transmission facilities
 • however, we will see that several key concepts that arise from data communications influence the design of many protocol layers
• Data communications provides a foundation of concepts
 – on which the rest of networking is built

Building Blocks for Data Communications

• Nodes: PC, special-purpose hardware…
 – hosts
 – switches
• Links: coax cable, optical fiber…
 – point-to-point
 – multiple access
Packet Switching and Networking Technologies

• In 1960s, the packet switching concept revolutionized data communications
• Early communication networks had evolved from telegraph and telephone systems
 – a physical pair of wires between two parties to form a dedicated circuit
• Although mechanical connections of wires was being replaced by electronic switches, the underlying paradigm remained the same:
 – form a circuit and then send information across the circuit
• Packet switching changed networking in a fundamental way
 – it provided the basis for the modern Internet
 – packet switching allows multiple users to share a network
 – packet switching divides data into small blocks, called packets
 – it includes an identification of the intended recipient in each packet
 – devices throughout the network each have information about how to reach each possible destination

Switched Networks

• A network can be defined recursively as...
 – two or more nodes connected by a link, or
 – two or more networks connected by a node
Packet Switching and Networking Technologies

- Many designs for packet switching are possible
- But there is a need for answers to basic questions:
 - how should a destination be identified?
 - how can a sender find the identification of a destination?
 - how large should a packet be?
 - how can a network recognize the end of one packet?
 - how can a network recognize the beginning of another packet?
 - if a network is shared, then how can they coordinate to insure that each receives a fair opportunity to send?
 - how can packet switching be adapted to wireless networks?
 - how can network technologies be designed to meet various requirements for speed, distance, and economic cost?
- Many packet switching technologies have been created
 - to meet various requirements for speed, distance, and economic cost

Internetworking with TCP/IP

- In the 1970s, another revolution in computer networks arose: Internet
- In 1973, Vinton Cerf and Robert Kahn observed that
 - no single packet switching technology would ever satisfy all needs
- They suggested to stop trying to find a single best solution
 - instead, explore interconnecting many packet switching technologies into a functioning whole
 - they proposed a set of standards be developed for such an interconnection
 - the resulting standards became known as the TCP/IP Internet Protocol Suite (usually abbreviated TCP/IP)
- The success of TCP/IP lies in its tolerance of heterogeneity
- TCP/IP takes a virtualization approach
 - that defines a network-independent packet and a network-independent identification scheme
Public/Private Internet

- The Internet consists of parts that are owned and operated by individuals or organizations.
- From an ownership point of view, we can categorize networks into public and private networks.
 - A public network is run as a service that is available to subscribers. Any individual or corporation who pays the subscription fee can use it. A company that offers service is known as a service provider. Public refers to the general availability of service, not to the data being transferred.
 - A private network is controlled by one particular group. Network use is restricted to one group. A private network can include circuits leased from a provider.

Networks, Interoperability, Standards

- Communication always involves at least two entities: one that sends information and another that receives it.
- All entities in a network must agree on how information will be represented and communicated. Agreement requires many details:
 - the way that electrical signals are used to represent data
 - procedures used to initiate and conduct communication, and the format of messages
- An important issue is interoperability. It refers to the ability of two entities to communicate.
 - All communicating parties agree on details and follow the same set of rules, an exact set of specifications.
 - Communication protocol, network protocol, or simply protocol to refer to a specification for network communication.
 - A protocol specifies the details for one aspect of communication:
 - including actions to be taken when errors or unexpected situations arise.

Protocol Suites and Layering Models

- A set of protocols must be constructed to ensure that the resulting communication system is complete and efficient.
- Each protocol should handle a part of communication not handled by other protocols.
- How can we guarantee that protocols work well together?
 - Instead of creating each protocol in isolation, protocols are designed in complete, cooperative sets called suites or families.
- Each protocol in a suite handles one aspect of networking:
 - the protocols in a suite cover all aspects of communication.
 - the entire suite is designed to allow the protocols to work together efficiently.
Protocol Suites and Layering Models

- The fundamental abstraction used to collect protocols into a unified whole is known as a layering model.
- All aspects of a communication problem can be partitioned into pieces that work together, each piece is known as a layer.
- Dividing protocols into layers helps both protocol designers and implementers manage the complexity to concentrate on one aspect of communication at a given time.

Example of Layering

Lecture Wrap-Up

- Questions?

Read Ch 1
Homework 1